深度学习(DL)通过前段光学相干断层扫描(AS-OCT)图像在角度闭合分类方面取得了重大进展。这些AS-OCT图像通常是通过不同的成像设备/条件获得的,这会导致基础数据分布的巨大变化(称为“数据域”)。此外,由于实用的标签困难,某些域(例如设备)可能没有任何数据标签。结果,在一个特定域(例如,特定设备)上训练的深层模型很难适应,因此在其他域(例如其他设备)上的性能很差。为了解决此问题,我们提出了一个多目标域的适应范式,以将在一个标记的源域上训练的模型转移到多个未标记的目标域。具体而言,我们提出了一种新型的多尺度多目标域对抗网络(M2DAN),以进行角度闭合分类。 M2DAN进行多域对抗性学习,以提取域不变特征,并开发一个多尺度模块,用于捕获AS-OCT图像的本地和全局信息。基于这些域不变的特征在不同尺度上,在源域上训练的深模型即使在这些域中没有任何注释,也能够在多个目标域上对角度闭合进行分类。对现实世界AS-OCT数据集进行的广泛实验证明了该方法的有效性。
translated by 谷歌翻译
在医学图像上,许多组织/病变可能模棱两可。这就是为什么一群临床专家通常会注释医疗细分以减轻个人偏见的原因。但是,这种临床常规也为机器学习算法的应用带来了新的挑战。如果没有确定的基础真相,将很难训练和评估深度学习模型。当从不同的级别收集注释时,一个共同的选择是多数票。然而,这样的策略忽略了分级专家之间的差异。在本文中,我们考虑使用校准的观察者间的不确定性来预测分割的任务。我们注意到,在临床实践中,医学图像分割通常用于帮助疾病诊断。受到这一观察的启发,我们提出了诊断优先的原则,该原则是将疾病诊断作为校准观察者间分段不确定性的标准。遵循这个想法,提出了一个名为诊断的诊断框架(DIFF)以估算从原始图像中进行诊断,从原始图像进行诊断。特别是,DIFF将首先学会融合多论者分段标签,以最大程度地提高单个地面真相疾病诊断表现。我们将融合的地面真相称为诊断第一基地真实(DF-GT)。我们验证了DIFF对三个不同的医学分割任务的有效性:对眼底图像的OD/OC分割,超声图像上的甲状腺结节分割以及皮肤镜图像上的皮肤病变分割。实验结果表明,拟议的DIFF能够显着促进相应的疾病诊断,这表现优于先前的最先进的多评论者学习方法。
translated by 谷歌翻译
深度度量学习(DML)有助于学习嵌入功能,以将语义上的数据投射到附近的嵌入空间中,并在许多应用中起着至关重要的作用,例如图像检索和面部识别。但是,DML方法的性能通常很大程度上取决于采样方法,从训练中的嵌入空间中选择有效的数据。实际上,嵌入空间中的嵌入是通过一些深层模型获得的,其中嵌入空间通常由于缺乏训练点而在贫瘠的区域中,导致所谓的“缺失嵌入”问题。此问题可能会损害样品质量,从而导致DML性能退化。在这项工作中,我们研究了如何减轻“缺失”问题以提高采样质量并实现有效的DML。为此,我们提出了一个密集锚定的采样(DAS)方案,该方案将嵌入的数据点视为“锚”,并利用锚附近的嵌入空间来密集地生成无数据点的嵌入。具体而言,我们建议用判别性特征缩放(DFS)和多个锚点利用单个锚周围的嵌入空间,并具有记忆转换转换(MTS)。通过这种方式,通过有或没有数据点的嵌入方式,我们能够提供更多的嵌入以促进采样过程,从而提高DML的性能。我们的方法毫不费力地集成到现有的DML框架中,并在没有铃铛和哨声的情况下改进了它们。在三个基准数据集上进行的广泛实验证明了我们方法的优势。
translated by 谷歌翻译
本文研究了一个新的,实用但具有挑战性的问题,称为类无监督的域名适应性(CI-UDA),其中标记的源域包含所有类别,但是未标记的目标域中的类别依次增加。由于两个困难,这个问题具有挑战性。首先,源和目标标签集在每个时间步骤都不一致,这使得很难进行准确的域对齐。其次,以前的目标类在当前步骤中不可用,从而忘记了先前的知识。为了解决这个问题,我们提出了一种新型的原型引导连续适应(PROCA)方法,由两种解决方案策略组成。 1)标签原型识别:我们通过检测具有目标样本的累积预测概率的共享类来识别目标标签原型。 2)基于原型的对齐和重播:基于确定的标签原型,我们对齐域并强制执行模型以保留先前的知识。有了这两种策略,ProCA能够有效地将源模型改编为类未标记的目标域。广泛的实验证明了Proca在解决CI-UDA方面的有效性和优势。源代码可从https://github.com/hongbin98/proca.git获得
translated by 谷歌翻译
深度神经网络通过学习从低分辨率(LR)图像到高分辨率(HR)图像的映射,在图像超分辨率(SR)任务中表现出了显着的性能。但是,SR问题通常是一个不适的问题,现有方法将受到一些局限性。首先,由于可能存在许多不同的HR图像,因此SR的可能映射空间可能非常大,可以将其删除到相同的LR图像中。结果,很难直接从如此大的空间中学习有希望的SR映射。其次,通常不可避免地要开发具有极高计算成本的非常大型模型来产生有希望的SR性能。实际上,可以使用模型压缩技术通过降低模型冗余来获得紧凑的模型。然而,由于非常大的SR映射空间,现有模型压缩方法很难准确识别冗余组件。为了减轻第一个挑战,我们提出了一项双重回归学习计划,以减少可能的SR映射空间。具体而言,除了从LR到HR图像的映射外,我们还学习了一个附加的双回归映射,以估算下采样内核和重建LR图像。通过这种方式,双映射是减少可能映射空间的约束。为了应对第二项挑战,我们提出了一种轻巧的双回归压缩方法,以基于通道修剪来降低图层级别和通道级别的模型冗余。具体而言,我们首先开发了一种通道编号搜索方法,该方法将双重回归损耗最小化以确定每一层的冗余。鉴于搜索的通道编号,我们进一步利用双重回归方式来评估通道的重要性并修剪冗余。广泛的实验显示了我们方法在获得准确有效的SR模型方面的有效性。
translated by 谷歌翻译
在计算机视觉中长期以来一直研究了时间行动定位。现有的最先进的动作定位方法将每个视频划分为多个动作单位(即,在一级方法中的两级方法和段中的提案),然后单独地对每个视频进行操作,而不明确利用他们在学习期间的关系。在本文中,我们声称,动作单位之间的关系在行动定位中发挥着重要作用,并且更强大的动作探测器不仅应捕获每个动作单元的本地内容,还应允许更广泛的视野与相关的上下文它。为此,我们提出了一般图表卷积模块(GCM),可以轻松插入现有的动作本地化方法,包括两阶段和单级范式。具体而言,我们首先构造一个图形,其中每个动作单元被表示为节点,并且两个动作单元之间作为边缘之间的关系。在这里,我们使用两种类型的关系,一个类型的关系,用于捕获不同动作单位之间的时间连接,另一类是用于表征其语义关系的另一个关系。特别是对于两级方法中的时间连接,我们进一步探索了两种不同的边缘,一个连接重叠动作单元和连接周围但脱节的单元的另一个。在我们构建的图表上,我们将图形卷积网络(GCNS)应用于模拟不同动作单位之间的关系,这能够了解更有信息的表示来增强动作本地化。实验结果表明,我们的GCM始终如一地提高了现有行动定位方法的性能,包括两阶段方法(例如,CBR和R-C3D)和一级方法(例如,D-SSAD),验证我们的一般性和有效性GCM。
translated by 谷歌翻译
现有的语音克隆(VC)任务旨在将段落文本转换为具有参考音频指定的所需语音的语音。这显着提高了人工语音应用的发展。然而,也存在许多情景,这些方案不能被这些VC任务更好地反映,例如电影配音,这需要语音与与电影图一致的情绪。为了填补这个差距,在这项工作中,我们提出了一个名为Visual Voice Cloning(V2C)的新任务,该任务试图将文本段落转换为具有由参考视频指定的参考音频和所需情绪指定的所需语音的语音。为了促进该领域的研究,我们构建数据集,V2C动画,并根据现有的最先进(SOTA)VC技术提出强大的基线。我们的数据集包含10,217个动画电影剪辑,覆盖各种类型的类型(例如,喜剧,幻想)和情感(例如,快乐,悲伤)。我们进一步设计了一组名为MCD-DTW-SL的评估度量,这有助于评估地面真理语音和合成的相似性。广泛的实验结果表明,即使是SOTA VC方法也不能为我们的V2C任务产生令人满意的演讲。我们希望拟议的新任务与建设的数据集和评估度量一起将促进语音克隆领域的研究和更广泛的视野和语言社区。
translated by 谷歌翻译
在许多真实世界应用程序中,我们经常需要处理各种部署方案,其中动态指定资源约束和对应于一组类的感兴趣的超类。如何为各种部署方案有效地部署深层模型是一个新的挑战。以前的NAS方法寻求同时为所有课程设计架构,这可能对某些单独的超类可能不是最佳的。直接解决方案是从划痕搜索每个部署方案的架构,然而,这是计算密集型和不切实际的。为了解决这个问题,我们提出了一种新颖且一般的框架,称为弹性架构搜索(EAS),允许在运行时即时专业化,以便具有各种资源限制的不同超类。为此,我们首先建议通过超类辍学策略有效地培训过参数化网络,以在训练期间解开不同的超类。以这种方式,所得到的模型对于在推理时间下降的随后的超类稳健。基于训练有素的过度参数化网络,我们提出了一个有效的架构生成器,以便在单个前向传递中获得有希望的架构。在三个图像分类数据集上的实验表明,EAS能够找到具有更好性能的更紧凑的网络,同时比最先进的NAS方法更快的数量序列。例如,我们的建议EA在50个部署方案中找到了0.1秒内的紧凑架构。
translated by 谷歌翻译
Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks that would trigger misclassification of DNNs but may be imperceptible to human perception. Adversarial defense has been important ways to improve the robustness of DNNs. Existing attack methods often construct adversarial examples relying on some metrics like the $\ell_p$ distance to perturb samples. However, these metrics can be insufficient to conduct adversarial attacks due to their limited perturbations. In this paper, we propose a new internal Wasserstein distance (IWD) to capture the semantic similarity of two samples, and thus it helps to obtain larger perturbations than currently used metrics such as the $\ell_p$ distance We then apply the internal Wasserstein distance to perform adversarial attack and defense. In particular, we develop a novel attack method relying on IWD to calculate the similarities between an image and its adversarial examples. In this way, we can generate diverse and semantically similar adversarial examples that are more difficult to defend by existing defense methods. Moreover, we devise a new defense method relying on IWD to learn robust models against unseen adversarial examples. We provide both thorough theoretical and empirical evidence to support our methods.
translated by 谷歌翻译
Although many studies have successfully applied transfer learning to medical image segmentation, very few of them have investigated the selection strategy when multiple source tasks are available for transfer. In this paper, we propose a prior knowledge guided and transferability based framework to select the best source tasks among a collection of brain image segmentation tasks, to improve the transfer learning performance on the given target task. The framework consists of modality analysis, RoI (region of interest) analysis, and transferability estimation, such that the source task selection can be refined step by step. Specifically, we adapt the state-of-the-art analytical transferability estimation metrics to medical image segmentation tasks and further show that their performance can be significantly boosted by filtering candidate source tasks based on modality and RoI characteristics. Our experiments on brain matter, brain tumor, and white matter hyperintensities segmentation datasets reveal that transferring from different tasks under the same modality is often more successful than transferring from the same task under different modalities. Furthermore, within the same modality, transferring from the source task that has stronger RoI shape similarity with the target task can significantly improve the final transfer performance. And such similarity can be captured using the Structural Similarity index in the label space.
translated by 谷歌翻译